Warning: fopen(game/tflkhtn70351): failed to open stream: No space left on device in /www/wwwroot/t014.baguatan.cn/public/game.php on line 35

Warning: fwrite() expects parameter 1 to be resource, bool given in /www/wwwroot/t014.baguatan.cn/public/game.php on line 36

Warning: fclose() expects parameter 1 to be resource, bool given in /www/wwwroot/t014.baguatan.cn/public/game.php on line 37
月之暗面 Kimi 开源 Moonlight:30 亿 / 160 亿参数混合专家模型
月之暗面 Kimi 开源 Moonlight:30 亿 / 160 亿参数混合专家模型

月之暗面 Kimi 开源 Moonlight:30 亿 / 160 亿参数混合专家模型

作者: 发表时间:2025-10-16 2:48:24
宿州市残联救助app 佳木斯市防火app 三沙市信息公开app 常州市妇联app 三门峡市水务app 黄冈市政要信息app 防城港市街道办app 威海市安全宣传app 乐山市财政信息app 驻马店市通讯协会app 绵阳市同城app 六安市政府公报app 顺平县第二中学app 连平县第一中学app 怀安县防火app 婺源县农业app 南木林县电视台广播app 黔西县学校简介app 莘县教育局app 郸城县第四小学app 拜城县农业局app 黟县第一小学app 伊宁县最新新闻app 铅山县新闻中心app 镇坪县政务服务app 永清县文旅信息app 通城县建设局信息app 龙州县城乡建设app 钟山县中心校app 云霄县水利app 永修县公共法律服务app 五台县消防宣传app 郯城县工商局app

本站 2 月 24 日消息,月之暗面 Kimi 昨日发布了“Muon 可扩展用于 LLM 训练”的新技术报告,并宣布推出“Moonlight”:一个在 Muon 上训练的 30 亿 / 160 亿参数混合专家模型(MoE)。使用了 5.7 万亿个 token,在更低的浮点运算次数(FLOPs)下实现了更好的性能,从而提升了帕累托效率边界。

月之暗面称,团队发现 Muon 优化器可通过添加权重衰减、仔细调整每个参数的更新幅度等技术进行扩展,并具备如下亮点:

这些技术使得 Muon 能够在大规模训练中开箱即用,无需进行超参数调优。扩展法则实验表明,与计算最优训练的 AdamW 相比,Muon 实现了约 2 倍的计算效率。

本次论文所使用的模型为 Moonlight-16B-A3B,总参数量为 15.29B,激活参数为 2.24B,其使用 Muon 优化器,在 5.7T Tokens 的训练数据下获得上述成绩。

我们的模型不仅突破了当前的 Pareto 前沿,还在训练所需的 FLOP 数大幅减少的情况下,达到了比以往模型更优的性能。

我们开源了一个分布式版本的 Muon 实现,它在内存使用和通信效率上都进行了优化。同时,我们也发布了预训练模型、经过指令调优的模型以及中间训练检查点,旨在为未来的研究提供支持。

本站附有关链接如下:

    GitHub:点此前往

    Hugging Face :点此前往

相关文章